Part Number Hot Search : 
SMR5016 SN74L 332KA86 MLZ1005 L15PF 2SA19 SG2004 MC34063
Product Description
Full Text Search
 

To Download XC6367F512MR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  18.$pouspmmfe 18.1'.4xjudibcmf4ufq?6q%$%$$pouspmmfst 4fsjft 407 4 (fofsbm%ftdsjqujpo 'fbuvsft "qqmjdbujpot 5zqjdbm"qqmjdbujpo$jsdvju 5zqjdbm 1fsgpsnbodf $ibsbdufsjtujd the xc6367/68 series are multi-functional step-up dc/dc converter controllers with built-in high speed, low on resistance drivers. large output currents are possible using an externally connected transistor, coil, diode and condenser. output voltage is selectable in 0.1 steps within a 1.5v ~ 6.5v range (2.5%). for output voltages outside this range, we recommend this fb version, which has a 1.0v internal reference voltage. using this version, the required output voltage can be set-up using 2 external resistors. with a 300khz switching frequency, the size of the external components can be reduced. control switches from pwm to pfm during light loads with the xc6368 (pwm/pfm switchable) and the series is highly efficient from light loads to large output currents. soft start time of xc6367/68a, b, and c series is internally set to 10msec and xc6367/68c, d, and f series regulate soft start time by connecting resistors and capacitors exteranally. during stand-by time (ce pin "low"), current consumption is reduced to less than 0.5 a. input voltage range : 0.9v~10v operating voltage range : 2.0v~10v output voltage range : 1.5v~6.5v programmable in 0.1v steps (2.5%) oscillator frequency : 300, 100khz (15%) custom products for 180, 500khz output current : 200ma + (v in =1.8v, v out =3.3v) high efficiency : 84% (typ.) stand-by capability :i stb =0.5a (max.) selection : soft start set-up external output voltage set-up internal (v out ) output voltage set-up external (fb) package : sot-25 electronic information organizers palmtops cellular and portable phones portable audio systems various multi-function power supplies input voltage range : 0.9~10.0v output voltage range : 1.5~6.5v(2.5%) oscillator frequency : 300khz(15%) pwm/pfm switching control (xc6368) high efficiency : 84% (typ.) sot-25 package 7 065 3 - 5s - 7 %% 7 065 (/% $& &95 $ - 5boubmvn $ */ 4% 7 */            7 */ 7 7 7 7 7 9$".3 l)[ 7
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
-) $3
$ - ' 5boubmvn
4%." 5s91"1 4@9$     ?? 
9$ 4fsjft 408 4 1jo$pogjhvsbujpo 1jo"ttjhonfou 1spevdu$mbttjgjdbujpo selection guide 9$9$tfsjft " # $ %uzqft  &95 (/% 7 065 '# 7 %% 405 5017*&8 $& 9$9$tfsjft & 'uzqft      &95 (/% $& 7 065 405 5017*&8 /$     pin number 5 a, b, c, d pin name ext function external transistor connection output voltage monitor (e, f types : output voltage monitor, power supply) (b, d types : output voltage set-up external) 1 xc6367 / xc6368 5 2v dd supply voltage input - 4 gnd ground4 e, f 2 v out (fb) chip enable (c, d, f types : soft start set-up external, soft start capacitor connected) 31 ce 9$" 9$" 9$& 9$& 9$# 9$# 9$$ 9$$ 9$' 9$' 9$% 9$% start output voltage set-up internal (v out ) soft-start set-up internal output voltage set-up external (fb) output voltage set-up internal (v out ) soft-start set-up external v out =v dd pin v out =v dd pin output voltage set-up external (fb) 4@9$     ?? 
9$ 4fsjft 409 4 ordering information a symbol v out /fb soft-start b 3 m c d e f v out fb v out fb v out v out set-up internal set-up internal set-up external set-up external set-up internal set-up external output voltage value : e.g. 3.0v output : ( w =3, e =0), f.b. products (b,d types) : ( w =1, e =0) oscillator frequency 300khz package sot-25 1 2 oscillator frequency 100khz oscillator frequency 180khz (custom) 5 oscillator frequency 500khz (custom) r l embossed tape : standard feed : reverse feed xc6367 series pwm control xc6367 qwerty xc6368 series pwm/pfm switching control (same as xc6367 series) xc6368 qwerty q w e r t y 1bdlbhjoh*ogpsnbujpo sot-25   ? ?   ? ?  njo   ?    4@9$     ?? 
9$ 4fsjft 410 4 .bsljoh xc6367 series 405 5017*&8
qwer q  3fqsftfoutuif1spevdu$mbttjgjdbujpo 9$' %&4*(/"503 ' 9$& & 9$% % 9$$ $ 9$# # 9$" " w  3fqsftfoutuifjoufhfspguif0vuqvu7pmubhfboe0tdjmmbups'sfrvfodz    04$*--"503'3&26&/$:l)[ */5&(&30'5)& 06516570-5"(& #  #         r  %fopuftuifqspevdujpompuovncfs  up "up;sfqfbufe (*+028fydfqufe
 130%6$5/".& $$  %%  &&  ''  ))  e  3fqsftfoutuifefdjnbmovncfspguif0vuqvu7pmubhfboe0tdjmmbups'sfrvfodz    04$*--"503'3&26&/$:l)[ 5)&%&$*."-/6.#&3 0'06516570-5"(&   "      # ) , - .                         $ % & ' " # ) , - . $ % & ' 4@9$     ?? 
9$ 4fsjft 411 4 xc6368 series 405 5017*&8
qwer 9$' 9$& 9$% 9$$ 9$# 9$"  $6450.  #  #         $$  %%  &&  ''  4  ))  , - . / 1 3      "      # ) , - .                         $ % & ' " # ) , - . $ % & ' q  3fqsftfoutuif1spevdu$mbttjgjdbujpo %&4*(/"503 w  3fqsftfoutuifjoufhfspguif0vuqvu7pmubhfboe0tdjmmbups'sfrvfodz */5&(&30'5)& 06516570-5"(& r  %fopuftuifqspevdujpompuovncfs  up "up;sfqfbufe (*+028fydfqufe
 130%6$5/".& e  3fqsftfoutuifefdjnbmovncfspguif0vuqvu7pmubhfboe0tdjmmbups'sfrvfodz 04$*--"503'3&26&/$:l)[ 04$*--"503'3&26&/$:l)[ 5)&%&$*."-/6.#&3 0'06516570-5"(& 4@9$     ?? 
9$ 4fsjft 412 4 #mpdl%jbhsbn (/% &95 7 %% 18. $pnqbsbups #vggfs %sjwfs  3bnq8bwf (fofsbups 04$ 18.1'. $pouspmmfs 1ibtf $pnqfotbujpo &ssps"nq  7sfgxjui 4pgu4ubsu $& 7 065 $& (/% &95 7 %% 18. $pnqbsbups #vggfs %sjwfs  3bnq8bwf (fofsbups 04$ 18.1'. $pouspmmfs 1ibtf $pnqfotbujpo &ssps"nq  7sfgxjui 4pgu4ubsu $& '# $& xc6367, xc6368 series a, c, e, f types (v out ) note : connecting v out and v dd internally with e, f types. xc6367, xc6368 series b,d types (fb) 4@9$     ?? 
9$ 4fsjft 413 4 ta= 25 c parameter ratings unitssymbol v dd pin voltage -0.3 ~ 12 vv dd v out pin voltage -0.3 ~ 12 vv out fb pin voltage -0.3 ~ 12 vv fb ce pin voltage -0.3 ~ 12 vv ce ext pin voltage -0.3 ~ v dd +0.3 vv ext ext pin current 100 mai ext continuous total power dissipation 150 mwpd operating ambient temperature -30 ~ +80 c topr storage temperature -40 ~ +125 c tstg xc6367a333mr, xc6368a333mr ta=25 c (v out =3.3v, f osc =300khz) parameter units output voltage v out v3.3833.3003.218 ce "low" voltage v cel v0.20 -- v out =set-up output voltage x0.95 pfm duty ratio (note 3) pfmdty %352515 same as i dd 1 ce "high" voltage v ceh v - 0.65 - i out =0ma oscillation start-up voltage 1 v st 1 v0.9 -- use of a 2sd1628 transistor, i out =1.0ma oscillation start-up voltage 2 v st 2 v0.8 -- v out =ce : apply voltage ext "high" on resistance r exth ? 4329 - v out =set-up output voltage x0.95 ext "low" on resistance r extl ? 2719 - same as i dd 1, v ext =v out -0.4v efficiency (note 2) effi %84 -- same as i dd 1, v ext =0.4v soft-start time t ss msec20105 supply voltage (note 1) v dd v2.0 10.0 - maximum input voltage v in v -- 10.0 supply current 1 i dd 1 - 130 a200 oscillation hold voltage v hld v0.7 -- use of a 2sx1628 transistor recommended, i out =1.0ma %9278 85 oscillator frequency f osc khz345300255 stand-by current i stb a - 0.5 - v out =set-up output voltage x 0.95, ce=0v maximum duty ratio maxdty same as i dd 1 v out =ce=set-up output voltage x 0.95 supply current 2 i dd 2v out =ce=set-up output voltage + 0.5v - 20 35 a symbol conditions maxmin typ unless otherwise specified, connect v dd to v out ; v in =set-up output voltage x 0.6, i out =130ma measuring conditions: when taking v dd from another power source please ensure that v dd = 2.0v or more. oscillation will occur with a value of v dd = 0.8v or more, but with a value of v dd = 2.0v or more, output voltage and oscillation frequency will be stable. note 1: effi = {[(output voltage) x (output current)] [(input voltage) x (input current)} x 100 note 2: applies to the xc6368 series only (duty ratio when control changes to pfm). note 3: "ctpmvuf.byjnvn3bujoht &mfdusjdbm$ibsbdufsjtujdt 4@9$     ?? 
9$ 4fsjft 414 4 xc6367a503mr, xc6368a503mr ta=25 c (v out =5.0v, f osc =300khz) parameter units output voltage v out v5.1255.0004.875 ce "low" voltage v cel v0.20 -- v out =set-up output voltage x0.95 pfm duty ratio (note 3) pfmdty %352515 same as i dd 1 ce "high" voltage v ceh v - 0.65 - i out =0ma oscillation start-up voltage 1 v st 1 v0.9 -- use of a 2sd1628 transistor, i out =1.0ma oscillation start-up voltage 2 v st 2 v0.8 -- v out =ce : apply voltage ext "high" on resistance r exth ? 2920 - v out =set-up output voltage x0.95 ext "low" on resistance r extl ? 1913 - same as i dd 1, v ext =v out -0.4v efficiency (note 2) effi %87 -- same as i dd 1, v ext =0.4v soft-start time t ss msec20105 supply voltage (note 1) v dd v2.0 10.0 - maximum input voltage v in v -- 10.0 supply current 1 i dd 1 - 180 a280 oscillation hold voltage v hld v0.7 -- use of a 2sd1628 transistor, i out =1.0ma %9278 85 oscillator frequency f osc khz345300255 stand-by current i stb a - 0.5 - v out =set-up output voltage x 0.95, ce=0v maximum duty ratio maxdty same as i dd 1 v out =ce=set-up output voltage x 0.95 supply current 2 i dd 2v out =ce=set-up output voltage + 0.5v - 22 38 a symbol conditions maxmin typ unless otherwise specified, connect v dd to v out ; v in =set-up output voltage x 0.6, i out =200ma measuring conditions: when taking v dd from another power source please ensure that v dd = 2.0v or more. oscillation will occur with a value of v dd = 0.8v or more, but with a value of v dd = 2.0v or more, output voltage and oscillation frequency will be stable. note 1: effi = {[(output voltage) x (output current)] [(input voltage) x (input current)} x 100 note 2: applies to the xc6368 series only (duty ratio when control changes to pfm). note 3: there are no products within the xc6367e, xc6368e series range which have a set-up voltage of less than 2.0v. note 4: xc6367c, xc6368c series series amendments: please note that the following condition applies : soft start time (t ss ) : connect r ss , c ss . ce 0v 3.0v xc6367e, xc6368e series please delete 'supply voltage (v dd ) ' and '(note 1)' please add the following note : there are no products within the xc6367f, xc6368f series range which have a set-up voltage of less than 2.0v. note 4: please delete 'supply voltage (v dd ) ' and '(note 1)' please add the following note : xc6367f, xc6368f series please note that the following condition applies : soft start time (t ss ) : connect r ss , c ss . ce 0v 3.0v 4@9$     ?? 
9$ 4fsjft 415 4 xc6367b103mr, xc6368b103mr ta=25 c v out =3.0v (when set-up), f osc =300khz parameter units output voltage v out v3.0753.0002.925 ce "low" voltage v cel v0.20 -- v dd =2.85v, fb=0v pfm duty ratio (note 3) pfmdty %352515 same as i dd 1 ce "high" voltage v ceh v - 0.65 - i out =0ma oscillation start-up voltage 1 v st 1 v0.9 -- use of a 2sd1628 transistor, i out =1.0ma oscillation start-up voltage 2 v st 2 v0.8 -- v dd =ce : apply voltage, fb=0v ext "high" on resistance r exth ? 4732 - v dd =2.85v, fb=0v ext "low" on resistance r extl ? 3020 - same as i dd 1, v ext =v out -0.4v efficiency (note 2) effi %84 -- same as i dd 1, v ext =0.4v soft-start time t ss msec20105 supply voltage (note 1) v dd v2.0 10.0 - maximum input voltage v in v -- 10.0 supply current 1 i dd 1 - 120 a190 oscillation hold voltage v hld v0.7 -- use of a 2sd1628 transistor, i out =1.0ma %9278 85 oscillator frequency f osc khz345300255 stand-by current i stb a - 0.5 - v dd =2.85v, ce=0v, fb=0v maximum duty ratio maxdty same as i dd 1 v dd =ce=2.85v, fb=0v supply current 2 i dd 2v dd =ce=3.5v, fb=1.2v - 20 34 a symbol conditions maxmin typ unless otherwise specified, v in =1.8v, i out =120ma external components : r fb 1 = 400k ? , r fb 2 = 200k ? , c fb = 47pf measuring conditions: when taking v dd from another power source please ensure that v dd = 2.0v or more. oscillation will occur with a value of v dd = 0.8v or more, but with a value of v dd = 2.0v or more, output voltage and oscillation frequency will be stable. note 1: effi = {[(output voltage) x (output current)] [(input voltage) x (input current)} x 100 note 2: applies to the xc6368 series only (duty ratio when control changes to pfm). note 3: xc6367d, xc6368d series series amendments: please note that the following condition applies : soft start time (t ss ) : connect r ss , c ss . ce 0v 3.0v 4@9$     ?? 
9$ 4fsjft 416 4 xc6367a331mr, xc6368a331mr ta=25 c (v out =3.3v, f osc =100khz) parameter units output voltage v out v3.3833.3003.218 ce "low" voltage v cel v0.20 -- v out =set-up output voltage x0.95 pfm duty ratio (note 3) pfmdty %352515 same as i dd 1 ce "high" voltage v ceh v - 0.65 - i out =0ma oscillation start-up voltage 1 v st 1 v0.9 -- use of a 2sd1628 transistor, i out =1.0ma oscillation start-up voltage 2 v st 2 v0.8 -- v out =ce : apply voltage ext "high" on resistance r exth ? 4329 - v out =set-up output voltage x0.95 ext "low" on resistance r extl ? 2719 - same as i dd 1, v ext =v out -0.4v efficiency (note 2) effi %84 -- same as i dd 1, v ext =0.4v soft-start time t ss msec20105 supply voltage (note 1) v dd v2.0 10.0 - maximum input voltage v in v -- 10.0 supply current 1 i dd 1 - 50 a100 oscillation hold voltage v hld v0.7 -- use of a 2sd1628 transistor, i out =1.0ma %9278 85 oscillator frequency f osc khz11510085 stand-by current i stb a - 0.5 - v out =set-up output voltage x 0.95, ce=0v maximum duty ratio maxdty same as i dd 1 v out =ce=set-up output voltage x 0.95 supply current 2 i dd 2v out =ce=set-up output voltage + 0.5v - 11 20 a symbol conditions maxmin typ unless otherwise specified, connect v dd to v out ; v in =set-up output voltage x 0.6, i out =130ma measuring conditions: when taking v dd from another power source please ensure that v dd = 2.0v or more. oscillation will occur with a value of v dd = 0.8v or more, but with a value of v dd = 2.0v or more, output voltage and oscillation frequency will be stable. note 1: effi = {[(output voltage) x (output current)] [(input voltage) x (input current)} x 100 note 2: applies to the xc6368 series only (duty ratio when control changes to pfm). note 3: 4@9$     ?? 
9$ 4fsjft 417 4 xc6367a501mr, xc6368a501mr ta=25 c (v out =5.0v, f osc =100khz) parameter units output voltage v out v5.1255.0004.875 ce "low" voltage v cel v0.20 -- v out =set-up output voltage x0.95 pfm duty ratio (note 3) pfmdty %352515 same as i dd 1 ce "high" voltage v ceh v - 0.65 - i out =0ma oscillation start-up voltage 1 v st 1 v0.9 -- use of a 2sd1628 transistor, i out =1.0ma oscillation start-up voltage 2 v st 2 v0.8 -- v out =ce : apply voltage ext "high" on resistance r exth ? 2920 - v out =set-up output voltage x0.95 ext "low" on resistance r extl ? 1913 - same as i dd 1, v ext =v out -0.4v efficiency (note 2) effi %87 -- same as i dd 1, v ext =0.4v soft-start time t ss msec20105 supply voltage (note 1) v dd v2.0 10.0 - maximum input voltage v in v -- 10.0 supply current 1 i dd 1 - 70 a120 oscillation hold voltage v hld v0.7 -- use of a 2sd1628 transistor, i out =1.0ma %9278 85 oscillator frequency f osc khz11510085 stand-by current i stb a - 0.5 - v out =set-up output voltage x 0.95, ce=0v maximum duty ratio maxdty same as i dd 1 v out =ce=set-up output voltage x 0.95 supply current 2 i dd 2v out =ce=set-up output voltage + 0.5v - 11 22 a symbol conditions maxmin typ unless otherwise specified, connect v dd to v out ; v in =set-up output voltage x 0.6, i out =200ma measuring conditions: when taking v dd from another power source please ensure that v dd = 2.0v or more. oscillation will occur with a value of v dd = 0.8v or more, but with a value of v dd = 2.0v or more, output voltage and oscillation frequency will be stable. note 1: effi = {[(output voltage) x (output current)] [(input voltage) x (input current)} x 100 note 2: applies to the xc6368 series only (duty ratio when control changes to pfm). note 3: 4@9$     ?? 
9$ 4fsjft 418 4 xc6367b101mr, xc6368b101mr ta=25 c v out =3.0v (when set-up), f osc =100khz parameter units output voltage v out v3.0753.0002.925 ce "low" voltage v cel v0.20 -- v dd =2.85v, fb=0v pfm duty ratio (note 3) pfmdty %352515 same as i dd 1 ce "high" voltage v ceh v - 0.65 - i out =0ma oscillation start-up voltage 1 v st 1 v0.9 -- use of a 2sd1628 transistor, i out =1.0ma oscillation start-up voltage 2 v st 2 v0.8 -- v dd =ce : apply voltage, fb=0v ext "high" on resistance r exth ? 4732 - v dd =2.85v, fb=0v ext "low" on resistance r extl ? 3020 - same as i dd 1, v ext =v out -0.4v efficiency (note 2) effi %84 -- same as i dd 1, v ext =0.4v soft-start time t ss msec20105 supply voltage (note 1) v dd v2.0 10.0 - maximum input voltage v in v -- 10.0 supply current 1 i dd 1 - 50 a90 oscillation hold voltage v hld v0.7 -- use of a 2sd1628 transistor, i out =1.0ma %9278 85 oscillator frequency f osc khz11510085 stand-by current i stb a - 0.5 - v dd =2.85v, ce=0v, fb=0v maximum duty ratio maxdty same as i dd 1 v dd =ce=2.85v, fb=0v supply current 2 i dd 2v dd =ce=3.5v, fb=1.2v - 11 20 a symbol conditions maxmin typ unless otherwise specified, v in =1.8v, i out =120ma external components : r fb 1 = 400k ? , r fb 2 = 200k ? , c fb = 47pf measuring conditions: when taking v dd from another power source please ensure that v dd = 2.0v or more. oscillation will occur with a value of v dd = 0.8v or more, but with a value of v dd = 2.0v or more, output voltage and oscillation frequency will be stable. note 1: effi = {[(output voltage) x (output current)] [(input voltage) x (input current)} x 100 note 2: applies to the xc6368 series only (duty ratio when control changes to pfm). note 3: 4@9$     ?? 
9$ 4fsjft 419 4 $jsdvjuy9$" 9$" $jsdvjuy9$# 9$# $jsdvjuy9$$ 9$$ 7 065 3 - 5s - 7 065 3 - 5s - 7 065 3 - 3 '# 3 '# 5s - 7 %% '# (/% $& &95 7 %% 7 065 3 44 (/% $& &95 7 %% 7 065 (/% $& &95 $ - 5boubmvn $ - 5boubmvn $ - 5boubmvn $ */ $ */ $ */ 4% 7 */ $ '# $ 44 4% 7 */ 7 */ 4% 5zqjdbm"qqmjdbujpo$jsdvjut 4@9$     ?? 
9$ 4fsjft 420 4 $jsdvjuy9$% 9$% $jsdvjuy9$& 9$& $jsdvjuy9$' 9$' 7 065 3 - 5s - 7 065 3 - 5s - 7 065 3 - 3 '# 3 '# 5s - 7 %% '# (/% $& &95 7 065 3 44 (/% $& &95 7 065 (/% $& &95 $ - 5boubmvn $ - 5boubmvn $ - 5boubmvn $ */ $ */ $ */ 4% 7 */ $ '# $ 44 4% 7 */ 7 */ 4% 3 44 $ 44 4@9$     ?? 
9$ 4fsjft 421 4 $jsdvjuy9$" 9$"/1/5sbotjtups $jsdvjuy9$# 9$#/1/5sbotjtups $jsdvjuy9$$ 9$$/1/5sbotjtups 7 065 3 - 5s - 7 %% 7 065 (/% $& $ # 3 # &95 7 065 3 - 3' # 3' # 5s - $ # 3 # 7 %% '# (/% $& &95 7 065 3 - 5s - 3 44 3 # $ - 5boubmvn $ - 5boubmvn $ - 5boubmvn $ */ $ */ $ */ 7 */ 4% 7 */ 7 */ $'# 4% 4% $ # $ 44 7 %% 7 065 (/% $& &95 4@9$     ?? 
9$ 4fsjft 422 4 $jsdvjuy9$% 9$%/1/5sbotjtups $jsdvjuy9$& 9$&/1/5sbotjtups $jsdvjuy9$' 9$'/1/5sbotjtups 7 065 3 - 3' # 3' # 5s - $ # 7 %% '# (/% $& &95 7 065 3 - 5s - 3 44 3 # $ - 5boubmvn $ - 5boubmvn $ */ $ */ 7 065 3 - 5s - 7 065 (/% $& $ # 3 # &95 $ - 5boubmvn $ */ 7 */ 4% 7 */ 7 */ $'# 4% 4% $ # $ 44 3 44 $ 44 7 065 (/% $& &95 3 # 4@9$     ?? 
9$ 4fsjft 423 4 recommended components tr l sd c in c l : xp161a1355pr (torex n-channel power mosfet) as the breakdown voltage of xp161a1355pr is 8v, take care with the power supply voltage. with output voltages over 6v, use the xp161a1265pr with a breakdown voltage of 12v. v st 1 : xp161a1355pr = 1.2v (max) xp161a1265pr = 1.5v (max) : 22 h (sumida cr54, f osc =300khz) 47 h (sumida cr75, f osc =100, 180khz) 10 h (sumida cr54, f osc =500khz) : ma2q735 (schottky diode, matsushita) : 16v 220 f (aluminium electrolytic capacitor) : 16v 47 f + 47 f (tantalum capacitor, nichicon mce) npn tr type : tr rb cb : 2sd1628 (sanyo) : 500 ? (adjust according to load and tr. hfe levels) : 2200pf (ceramic type) set up so that c b 1 (2 x r b x f osc x 0.7) c, d, f type (soft-start externally set-up) : c ss r ss : 0.1 f (ceramic capacitor) : 470k ? (c, f type), 220k ? (d type) b, d type (fb versions) r fb c fb e.g : set up so that r fb 1 r fb 2 = v out - 1 (v out = set-up output voltage), please use with r fb 1 + r fb 2 2m ? : set up so that fzfb = 1 (2 x x c fb x r fb 1) is within the 0.1 to 20khz range (10khz conventional) adjustments necessary in respect of l, c l . v out = 3.0v r fb 1 = 400k ? , r fb 2 = 200k ? , c fb = 47pf if using a torex mosfet, we recommend using one which has a gate protection diode built-in. r ds (on) r ds (on) gate protection diode built-in xp161a1355pr 0.15 
@v gs =1.5v xp161a1265pr 0.095 
@v gs =2.5v 4@9$     ?? 
9$ 4fsjft 424 4  external components 9$9$%y.3 '#
            .*/ ."9 yy             .*/ ."9 9$9$#y.3 '#
9$9$%y.3 '#
             3 '#  l

$ '# q'
l)[ l)[ g[gcl)[ 4pgu4ubsu5jnf5 44  ntfd
4pgu4ubsu5jnf5 44  ntfd
9$9$$yyy.3 7 065
7 %% 7 065 7 7tfuvq
7 $& 77 3 44 l
7 %% 7 065 7 065 tfuvqwpmubhf7 7 $& 77 3 44 l
4pgu4ubsu$poefotfs$bqbdjubodf$ 44  '
4pgu4ubsu$poefotfs$bqbdjubodf$ 44 y '
1. soft start time set up g[gc? ( 2  x c fb x r fb 1 )  r fb 1 | c fb set up if you wish to lengthen soft start time we recommend that you use the c or d versions of the series which have soft start time externally set up. soft start time (t ss ) is between min & max, as indicated in the graphs below, so please select soft start condenser capacitance (c ss ) to suit your application. in order to achieve a value for fzfb within the range of 0.1khz to 20khz, we recommend that values for r fb 1 & c fb are selected from the area indicated within the lines of fzfb = 0.1khz and fzfb = 20 khz as shown on the graph below. please select combinations of values as close to the fzfb = 10khz line as possible. external components %jsfdujpotgpsvtf notes on use take ample care to ensure that none of the ic's, nor the external component's, absolute maximum ratings are exceeded. be extremely careful when selecting parts and do not limit your reference to the specifications and characteristics for the dc/dc converter alone. the ic also depends, to a great extent, upon the external components. arrange the peripherals in the environs of the ic. in order to reduce wiring impedance, use short, thick wires. in particular, wire the load capacitor as close as possible and strengthen the ground wiring sufficiently. ground current during switching may cause the ic's operations to become unstable due to changes in ground voltage, so please strengthen the ic's gnd pin surroundings. 4@9$     ?? 
9$ 4fsjft 425 4 9$".3 l)[ 7
           7 7 */ 7 7 9$".3 l)[ 7
           7 7 */ 7 7 7 7 9$".3 l)[ 7
           7 7 */ 7 7 7 7 9$".3 l)[ 7
           7 7 */ 7 7 7 7 9$".3 l)[ 7
           7 7 */ 7 7 7 7 9$".3 l)[ 7
           7 7 */ 7|7 7 7  electrical characteristics (1) output voltage vs. output current 7 7 7 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 0vuqvu$vssfou* 065  n"
0vuqvu7pmubhf7 065  7
-) $3
$ - ' 5boubmvn
0vuqvu7pmubhf7 065  7
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
-) $3
$ - ' 5boubmvn
4%." 5s91"1 0vuqvu$vssfou* 065  n"
/pufa&yufsobmdpnqpofou?$ */ ' &mfduspmzujddbqbdjups
4%."|5s91"1 5zqjdbm 1fsgpsnbodf$ibsbdufsjtujdt 4@9$     ?? 
9$ 4fsjft 426 4            7 */ 7 7 7 %% 7            7 7 */ 7 7 7 7            7 7 */ 7 7 7 7            7 7 */ 7 7 7 7            7 7 */ 7 7 9$".3 l)[ 7
9$".3 l)[ 7
9$#.3 l)[ 7
9$#.3 l)[ 7
9$#.3 l)[ 7
/pufa&yufsobmdpnqpofou?$ */ ' &mfduspmzujddbqbdjups
-) $3
$ - ' 5boubmvn
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
-) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 4%." 5s4%( 3 # 
$ # q' (1) output voltage vs. output current 4@9$     ?? 
9$ 4fsjft 427 4            7 */ 7 7 7 7 7 7            7 */ 7 7 7 7 7            7 */ 7 7 7 7 7            7 */ 7 7 7 7 7            7 */ 7 7 7 7 7            7 */ 7 7 7 7 9$".3 l)[ 7
9$".3 l)[ 7
9$".3 l)[ 7
9$".3 l)[ 7
9$".3 l)[ 7
9$".3 l)[ 7
(2) efficiency vs. output current 0vuqvu$vssfou* 065  n"
/pufa&yufsobmdpnqpofou?$ */ ' &mfduspmzujddbqbdjups
0vuqvu$vssfou* 065  n"
&ggjdjfodz&''* 
&ggjdjfodz&''* 
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
&ggjdjfodz&''* 
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
-) $3
$ - ' 5boubmvn
4%." 5s91"1 4%." 5s91"1 -) $3
$ - ' 5boubmvn
-) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 4@9$     ?? 
9$ 4fsjft 428 4            7 */ 7 7 7 %% 7            7 */ 7 7 7 7 7            7 */ 7 7 7 7 7            7 */ 7 7 7 7 7            7 */ 7 7 7 9$".3 l)[ 7
9$".3 l)[ 7
9$#.3 l)[ 7
9$#.3 l)[ 7
9$#.3 l)[ 7
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
&ggjdjfodz&''* 
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
&ggjdjfodz&''* 
&ggjdjfodz&''* 
0vuqvu$vssfou* 065  n"
/pufa&yufsobmdpnqpofou?$ */ ' &mfduspmzujddbqbdjups
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
-) $3
$ - ' 5boubmvn
4%." 5s91"1 -) $3
$ - ' 5boubmvn
4%." 5s91"1 4%." 5s4%( 3 # 
$ # q' -) $3
$ - ' 5boubmvn
(2) efficiency vs. output current 4@9$     ?? 
9$ 4fsjft 429 4      -1  )$3 $ - 1  '5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 7 */ 7      -1  )$3 $ - 1  '5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 7 */ 7      -1  )$3 $ - 1  '5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 */ 7 7      -1  )$3 $ - 1  '5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 7 7 */ 7      -1  )$3 $ - 1  '5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 7 */ 7      -1  )$3 $ - 1  '5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 */ 7 (3) ripple voltage vs. output current 4@9$     ?? 
9$ 4fsjft 430 4      -1)$3 $ - 1'5boubmvn 4%." 5s91"1 0vuqvu$vssfou* 065 n" 9$".3l)[ 7       3jqqmf7pmubhf7 s n7 7 7 7 7 7 */ 7 (3) ripple voltage vs. output current 4@9$     ?? 
                                                                                          7 */ 7 * 065 n" "ncjfou5fnq5b ?
9$".3 l)[ 7
"ncjfou5fnq5b ?
9$".3 l)[ 7
"ncjfou5fnq5b ?
9$".3 l)[ 7
"ncjfou5fnq5b ?
9$".3 l)[ 7
"ncjfou5fnq5b ?
9$".3 l)[ 7
"ncjfou5fnq5b ?
9$#.3 l)[ 7 (4) output voltage vs. ambient temperature (5) supply current 1 vs. ambient temperature (6) supply current 2 vs. ambient temperature (7) stand-by current vs. ambient temperature (8) ext"h"on resistance vs. ambient temperature (9) ext"l"on resistance vs. ambient temperature 7 %% 7 065 7 -) $3
$ - ' 5boubmvn
4%." 5s91"1 7 %% 7 065 7 7 %% 7 7 065 7 $& 7 7 %% 7 065 7 7 %% 7 065 7 0vuqvu 7pmubhf7 065   7
4vqqmz$vssfou* %%   "
4uboe#z$vssfou* 45#   "
4vqqmz$vssfou* %%   "
&95)0/3ftjtubodf3 &95)  

&95-0/3ftjtubodf3 &95-  

9$ 4fsjft 431 4 4@9$     ?? 
9$ 4fsjft 432 4             * 065 n"               * 065 n"              7 */ 7 * 065 n"                                       "ncjfou5fnq5b ?
0qfsbujoh)pme7pmubhf7 )-% 7
9$#.3 l)[ 7 "ncjfou5fnq5b ?
0qfsbujoh4ubsu7pmubhf7 45  7
9$#.3 l)[ 7 "ncjfou5fnq5b ?
&ggjdjfodz&''* 
9$".3 l)[ 7
"ncjfou5fnq5b ?
1'.%vuz3bujp1'.%5: 
9$".3 l)[ 7
"ncjfou5fnq5b ?
.by%vuz3bujp."9%5: 
9$".3 l)[ 7
"ncjfou5fnq5b ?
0tdjmmbujpo'sfrvfodz' 04$  l)[
9$".3 l)[ 7
(10) oscillation frequency vs. ambient temperature (11) max. duty ratio vs. ambient temperature (12) pfm duty ratio vs. ambient temperature (13) efficiency vs. ambient temperature (15) operating hold voltage vs. ambient temperature (14) operating start voltage vs. ambient temperature 7 %% 7 065 7 7 %% 7 065 7 7 */ 7 * 065 n" 4%." 5s91"1 -) $3
$ - ' 5boubmvn
-) $3
$ - ' 5boubmvn
4%." 5s4%( -) $3
$ - ' 5boubmvn
4%." 5s4%( 4@9$     ?? 
9$ 4fsjft 433 4                                                               7 %% 7 7 %% 7 "ncjfou5fnq5b ?
9$".3 l)[ 7
"ncjfou5fnq5b ?
"ncjfou5fnq5b ?
"ncjfou5fnq5b ?
9$".3 l)[ 7
9$".3 l)[ 7
9$".3 l)[ 7
(16) oscillation start voltage vs. ambient temperature (17) soft start time vs. ambient temperature (18) ce "l"voltage vs. ambient temperature (19) ce "h"voltage vs. ambient temperature 0tdjmmbujpo4ubsu7pmubhf7 45  7
4pgu4ubsu5jnf5 44  nt
$&)7pmubhf7 $&)  7
$&-7pmubhf7 $&-  7
4@9$     ?? 
9$ 4fsjft 434 4             n" n"             n" n"             n" n"             n" n"             "             " n" 9$".3 l)[ 7
5jnf ntfdejw
0vuqvu7pmubhf 0vuqvu$vssfou 9$".3 l)[ 7
5jnf ntfdejw
0vuqvu7pmubhf 0vuqvu$vssfou 9$".3 l)[ 7
5jnf ntfdejw
0vuqvu7pmubhf 0vuqvu$vssfou 9$".3 l)[ 7
5jnf ntfdejw
0vuqvu7pmubhf 0vuqvu$vssfou 9$".3 l)[ 7
5jnf ntfdejw
0vuqvu7pmubhf n" 0vuqvu$vssfou 9$".3 l)[ 7
5jnf ntfdejw
0vuqvu7pmubhf 0vuqvu$vssfou 7 */ 7 * 065 "n" 7 */ 7 * 065 n"" 7 */ 7 * 065 n"n" 7 */ 7 * 065 n"n" 7 */ 7 * 065 n"n" 7 */ 7 * 065 n"n" (20) load transient response 0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu7pmubhf7 065  7
0vuqvu7pmubhf7 065  7
0vuqvu$vssfou* 065  n"
0vuqvu$vssfou* 065  n"
0vuqvu7pmubhf7 065  7
0vuqvu$vssfou* 065  n"
0vuqvu7pmubhf7 065  7
0vuqvu$vssfou* 065  n"
4@9$     ?? 


▲Up To Search▲   

 
Price & Availability of XC6367F512MR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X